数学白痴的暴击:世界十大数学难题

第一星座网 作者: 匿名15813人在看

  数学这门学科,对很多学子来说可能都是一大难题,而对数学白痴而言,就可能是相当于在看天书了。在当今世界中,有十大数学难题难住了大部分人,你敢不敢和小编一起去民族文化中感受一下?

  “千年大奖”七大数学难题:
  1、NP完全问题
  简介:
  NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题。

  而如果任何一个NP问题都能通过一个多项式时间算法转换为某个NP问题,那么这个NP问题就称为NP完全问题(Non-deterministicPolynomialcompleteproblem)。NP完全问题也叫做NPC问题。

  有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题。有没有一个公式,你一套公式,就可以一步步推算出来,下一个质数应该是多少呢?这样的公式是没有的。再比如,大的合数分解质因数的问题,有没有一个公式,把合数代进去,就直接可以算出,它的因子各自是多少?也没有这样的公式。

  这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这就是非确定性问题。而这些问题的通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式时间内算出来,就叫做多项式非确定性问题。而如果这个问题的所有可能答案,都是可以在多项式时间内进行正确与否的验算的话,就叫完全多项式非确定问题。

  完全多项式非确定性问题可以用穷举法得到答案,一个个检验下去,最终便能得到结果。但是这样算法的复杂程度,是指数关系,因此计算的时间随问题的复杂程度成指数的增长,很快便变得不可计算了。

  人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题存在一个确定性算法,可以在多项式时间内直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。

  解决这个猜想,无非两种可能,一种是找到一个这样的算法,只要针对某个特定NP完全问题找到一个算法,所有这类问题都可以迎刃而解了,因为他们可以转化为同一个问题。另外的一种可能,就是这样的算法是不存在的。那么就要从数学理论上证明它为什么不存在。

  详细信息:
  P类问题:所有可以在多项式时间内求解的判定问题构成P类问题。判定问题:判断是否有一种能够解决某一类问题的能行算法的研究课题。

  NP类问题:所有的非确定性多项式时间可解的判定问题构成NP类问题。非确定性算法:非确定性算法将问题分解成猜测和验证两个阶段。算法的猜测阶段是非确定性的,算法的验证阶段是确定性的,它验证猜测阶段给出解的正确性。设算法A是解一个判定问题Q的非确定性算法,如果A的验证阶段能在多项式时间内完成,则称A是一个多项式时间非确定性算法。有些计算问题是确定性的,例如加减乘除,只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题。有没有一个公式能推出下一个质数是多少呢?这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这也就是非确定性问题。而这些问题的通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式(polynomial)时间内算出来,就叫做多项式非确定性问题。

  NPC问题:NP中的某些问题的复杂性与整个类的复杂性相关联.这些问题中任何一个如果存在多项式时间的算法,那么所有NP问题都是多项式时间可解的.这些问题被称为NP-完全问题(NPC问题)。

  例子:
  在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现宴会的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

  生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

  人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。

  不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。

你可能也喜欢:
十大最有气质的乐器,让你散发迷人气质
中国四大凶兽,一个比一个凶
上古十大魔神都有哪些,上古十大魔神谁最厉害
中国古代十大美男简介,古代十大美男复原图

  2、霍奇猜想
  霍奇猜想是代数几何的一个重大的悬而未决的问题。由威廉·瓦伦斯·道格拉斯·霍奇提出,它是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联的猜想。

  在非奇异复射影代数簇上,任一霍奇类是代数闭链类的有理线性组合。

  问题:
  霍奇猜想是代数几何的一个重大的悬而未决的问题。它是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联的猜想。它在霍奇的著述的一个结果中出现,他在1930至1940年间通过包含额外的结构丰富了德拉姆上同调的表述,这种结构出现于代数簇的情况(但不仅限于这种情况)。

  背景:
  二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

  不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

  现状:
  黎曼假设、庞加莱猜想、霍奇猜想、贝赫和斯维讷通-戴尔猜想、纳维叶―斯托克斯方程、杨―米尔理论、P问题对NP问题被称为21世纪七大数学难题。2000年5月,美国的克莱数学研究所为每道题悬赏百万美元求解。目前,这一难题仍没有被破解。

  已知的情形:
  对于(1,1)类的霍奇猜想已经在霍奇本人提出本猜想前的1924年由Lefschetz证明。换句话说,霍奇猜想对于H^2成立。实际上,这是霍奇提出其猜想的动机之一。

你可能也喜欢:
京剧脸谱图片欣赏,感受中华艺术魅力
万人景仰!中国历史上十大明君
“遗臭万年”的史上十大毒妇
人前人后两副面孔,史上十大伪君子

  3、庞加莱猜想
  庞加莱猜想(Poincaréconjecture)是法国数学家庞加莱提出的一个猜想,是克雷数学研究所悬赏的七个千禧年大奖难题。其中三维的情形被俄罗斯数学家格里戈里·佩雷尔曼于2003年左右证明。

  2006年,数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。庞加莱猜想是一个拓扑学中带有基本意义的命题,将有助于人类更好地研究三维空间,其带来的结果将会加深人们对流形性质的认识。

  陈述:
  1904年,法国数学家亨利·庞加莱提出了一个拓扑学的猜想:
  “任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。”

  简单的说,一个闭的三维流形就是一个没有边界的三维空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维圆球。

  后来,这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”。

  猜想比喻:
  如果你认为这个说法太抽象的话,我们不妨做这样一个想象:
  我们想象这样一个房子,这个空间是一个球。或者,想象一只巨大的足球,里面充满了气,我们钻到里面看,这就是一个球形的房子。

  我们不妨假设这个球形的房子墙壁是用钢做的,非常结实,没有窗户没有门,我们在这样的球形房子里。拿一个气球来,带到这个球形的房子里。随便什么气球都可以(其实对这个气球是有要求的)。这个气球并不是瘪的,而是已经吹成某一个形状,什么形状都可以(对形状也有一定要求)。但是这个气球,我们还可以继续吹大它,而且假设气球的皮特别结实,肯定不会被吹破。还要假设,这个气球的皮是无限薄的。

  好,接着我们继续吹大这个气球,一直吹。吹到最后会怎么样呢?庞加莱先生猜想,吹到最后,一定是气球表面和整个球形房子的墙壁表面紧紧地贴住,中间没有缝隙。

  我们还可以换一种方法想想:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。

  看起来这是不是很容易想清楚?但数学可不是“随便想想”就能证明一个猜想的,这需要严密的数学推理和逻辑推理。一个多世纪以来,无数的科学家为了证明它,绞尽脑汁甚至倾其一生还是无果而终。

  大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

  在2002年11月和2003年7月之间,俄罗斯的数学家格里戈里·佩雷尔曼在发表了三篇论文预印本,并声称证明了几何化猜想。

  在佩雷尔曼之后,先后有2组研究者发表论文补全佩雷尔曼给出的证明中缺少的细节。这包括密西根大学的布鲁斯·克莱纳和约翰·洛特;哥伦比亚大学的约翰·摩根和麻省理工学院的田刚。

  2006年8月,第25届国际数学家大会授予佩雷尔曼菲尔兹奖。数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。

你可能也喜欢:
让人望穿秋水,世界十大美腿
世界十大考古未解之谜,好诡异!
时间排序:中国十大王朝有哪些?
臭名昭著,世界十大邪教

  4、黎曼假设
  黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,其中便包括黎曼假设。现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼猜想。

  与费尔马猜想时隔三个半世纪以上才被解决,哥德巴赫猜想历经两个半世纪以上屹立不倒相比,黎曼猜想只有一个半世纪的纪录还差得很远,但它在数学上的重要性要远远超过这两个大众知名度更高的猜想。黎曼猜想是当今数学界最重要的数学难题。目前有消息指尼日利亚教授奥派耶米伊诺克(OpeyemiEnoch)成功解决黎曼猜想,然而克雷数学研究所既不证实也不否认伊诺克博士正式解决了这一问题。

  历史上关于黎曼猜想被证实的闹剧时常传出,近日所谓黎曼猜想被尼日利亚籍教授证明的网文中并没有说明克雷数学研究所已经承认并授予奖金,克雷数学研究所官网目前并无任何表态,而学界专业评价趋于消极。

  猜想来源:
  黎曼猜想是黎曼1859年提出的,1859年,黎曼被选为了柏林科学院的通信院士。作为对这一崇高荣誉的回报,他向柏林科学院提交了一篇题为“论小于给定数值的素数个数”的论文。这篇只有短短八页的论文就是黎曼猜想的“诞生地”。

  黎曼那篇论文所研究的是一个数学家们长期以来就很感兴趣的问题,即素数的分布。素数又称质数。质数是像2、5、19、137那样除了1和自身以外不能被其他正整数整除的数。这些数在数论研究中有着极大的重要性,因为所有大于1的正整数都可以表示成它们的乘积。从某种意义上讲,它们在数论中的地位类似于物理世界中用以构筑万物的原子。质数的定义简单得可以在中学甚至小学课上进行讲授,但它们的分布却奥妙得异乎寻常,数学家们付出了极大的心力,却迄今仍未能彻底了解。

  黎曼论文的一个重大的成果,就是发现了质数分布的奥秘完全蕴藏在一个特殊的函数之中,尤其是使那个函数取值为零的一系列特殊的点对质数分布的细致规律有着决定性的影响。那个函数如今被称为黎曼ζ函数,那一系列特殊的点则被称为黎曼ζ函数的非平凡零点。

  有意思的是,黎曼那篇文章的成果虽然重大,文字却极为简练,甚至简练得有些过分,因为它包括了很多“证明从略”的地方。而要命的是,“证明从略”原本是应该用来省略那些显而易见的证明的,黎曼的论文却并非如此,他那些“证明从略”的地方有些花费了后世数学家们几十年的努力才得以补全,有些甚至直到今天仍是空白。但黎曼的论文在为数不少的“证明从略”之外,却引人注目地包含了一个他明确承认了自己无法证明的命题,那个命题就是黎曼猜想。黎曼猜想自1859年“诞生”以来,已过了一百五十多个春秋,在这期间,它就像一座巍峨的山峰,吸引了无数数学家前去攀登,却谁也没能登顶。

  当然,如果仅从时间上比较的话,黎曼猜想的这个纪录跟费尔马猜想时隔三个半世纪以上才被解决,以及哥德巴赫猜想历经两个半世纪以上屹立不倒相比,还差得很远。但黎曼猜想在数学上的重要性却要远远超过这两个大众知名度更高的猜想。有人统计过,在当今数学文献中已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。如果黎曼猜想被证明,所有那些数学命题就全都可以荣升为定理;反之,如果黎曼猜想被否证,则那些数学命题中起码有一部分将成为陪葬。一个数学猜想与为数如此众多的数学命题有着密切关联,这是极为罕有的。

  黎曼猜想提出:
  黎曼ζ函数的所有非平凡零点都位于复平面上Re(s)=1/2的直线上。也即方程ζ(s)=0的解的实部都是1/2。

  在黎曼猜想的研究中,数学家们把复平面上Re(s)=1/2的直线称为criticalline(临界线)。运用这一术语,黎曼猜想也可以表述为:黎曼ζ函数的所有非平凡零点都位于criticalline上。

  猜想验证进展:
  荷兰三位数学家J.vandeLune,H.J.Rielete及D.T.Winter利用电子计算机来检验黎曼的假设,他们对最初的二亿个齐打函数的零点检验,证明黎曼的假设是对的,他们在1981年宣布他们的结果,目前他们还继续用电子计算机检验底下的一些零点。

  1982年11月苏联数学家马帝叶雪维奇在苏联杂志《Kibernetika》宣布,他利用电脑检验一个与黎曼猜想有关的数学问题,可以证明该问题是正确的,从而反过来可以支持黎曼的猜想很可能是正确的。

  1975年美国麻省理工学院的莱文森在他患癌症去世前证明了No(T)>0.3474N(T)。

  1980年中国数学家楼世拓、姚琦对莱文森的工作有一点改进,他们证明了No(T)>0.35N(T)。

  黎曼假设之否认:
  其实虽然因素数分布而起,但是却是一个歧途,因为伪素数及素数的普遍公式告诉我们,素数与伪素数由它们的变量集决定的。具体参见伪素数及素数词条。

你可能也喜欢:
心惊肉跳,世界十大最毒的虫子
毛骨悚然,世界十大凶猛海洋生物
夺命于无形,世界十大妖刀
正面临灭顶之灾,世界十大濒危动物盘点

  正式解决:
  据英国《每日邮报》11月17日报道,近日,尼日利亚教授奥派耶米伊诺克(OpeyemiEnoch)成功解决已存在156年的数学难题——黎曼猜想,获得100万美元(约合人民币630万元)的奖金。

  黎曼猜想由德国数学家黎曼(Bernard)于1859年提出,其中涉及了素数的分布,被认为是世界上最困难的数学题之一。2000年,美国克莱数学研究所(ClayMathematicsInstitute)将黎曼猜想列为七大千年数学难题之一。

  自从费马大定理于20世纪90年代得以解决后,黎曼问题便成为数学界最著名、最受争议的问题。该问题中最简单的部分在于其中所有质数的分布并不遵循规律。

  伊诺克博士在尼日利亚某大学任教。他表示,自己在2010年取得关键性突破,这为后来能够解决这一千年难题奠定了基础。他说,自己之所以决定解决这一著名的数学难题不是为了奖金,而是因为自己的学生。正是因为学生们相信自己,他才开始尝试解决这一数学难题。

  然而,克莱数学研究所既不证实也不否认伊诺克博士正式解决了这一问题,只是简单表示对这些千年数学难题的解决办法不予评论。

  5、杨-米尔斯存在性和质量缺口
  杨-米尔斯(Yang-Mills)理论,是现代规范场理论的基础,20世纪下半叶重要的物理突破,旨在使用非阿贝尔李群描述基本粒子的行为,是由物理学家杨振宁和米尔斯在1954年首先提出来的。这个当时没有被物理学界看重的理论,通过后来许多学者于1960到1970年代引入的对称性自发破缺与渐进自由的观念,发展成今天的标准模型。这一理论中出现的杨-米尔斯方程是一组数学上未曾考虑到的极有意义的非线性偏微分方程。

  作用:
  它起源于对电磁相互作用的分析,利用它所建立的弱相互作用和电磁相互作用的统一理论,已经为实验所证实,特别是这理论所预言的传播弱相互作用的中间玻色子,已经在实验中发现。杨-米尔斯理论又为研究强子(参与强相互作用的基本粒子)的结构提供了有力的工具。在某种意义上说,引力场也是一种规范场。所以这一理论在物理中的作用非常重要。

  意义:
  数学家注意到杨-米尔斯场中的规范势恰是数学家在20世纪30~40年代以来深入研究过的纤维丛上的联络。1975年以来数学家对杨-米尔斯方程进行了许多深入的研究,这些研究对于纯粹数学的发展,也起了推动作用。

  新观念:
  量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。

  尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

你可能也喜欢:
泰国十大最著名景观,到处都是美景!
世界十大音乐鬼才,有你的偶像吗
大开眼界,中国十大宦官
传统文化传承,中国十大陶瓷你知道几个?

  6、纳卫尔-斯托可方程
  纳维-斯托克斯方程(Navier-Stokesequations),以克劳德·路易·纳维(Claude-LouisNavier)和乔治-盖伯利尔-斯托克斯命名,是一组描述象液体和空气这样的流体物质的方程,简称N-S方程,是世界七大数学难题之一。因1821年由C.-L.-M.-H.纳维建立和1845年由G.G.斯托克斯改进而得名。

  方程意义:
  方程建立了流体的粒子动量的改变率(加速度)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及重力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡,这在流体力学中有十分重要的意义。

  它们是最有用的一组方程之一,因为它们描述了大量对学术和经济有用的现象的物理过程。它们可以用于建模天气,洋流,管道中的水流,星系中恒星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析,等等。

  方程中的奥秘:
  起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳卫尔-斯托可方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳卫尔-斯托可方程方程中的奥秘。

  方程描述:
  纳维-斯托克斯方程依赖微分方程来描述流体的运动。这些方程,和代数方程不同,不寻求建立所研究的变量(譬如速度和压力)的关系,而是建立这些量的变化率或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。

  这样,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明加速度(速度的导数,或者说变化率)是和内部压力的导数成正比的。这表示对于给定的物理问题的纳维-斯托克斯方程的解必须用微积分的帮助才能取得。实用上,只有最简单的情况才能用这种方法解答,而它们的确切答案是已知的。这些情况通常设计稳定态(流场不随时间变化)的非湍流,其中流体的粘滞系数很大或者其速度很小(小的雷诺数)。

  对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维?斯托克斯方程的解必须借助计算机。这本身是一个科学领域,称为计算流体力学。

  虽然湍流是日常经验中就可以遇到的,但这类问题极难求解。一个$1,000,000的大奖由克雷数学学院于2000年5月设立,奖给对于能够帮助理解这一现象的数学理论作出实质性进展的任何人。

你可能也喜欢:
泰国十大男明星,帅到爆表
女人看了都把持不住,泰国十大最美人妖
中国古代十大名戟图片,中国古代十大名戟排行
中国史上最色癖帝皇:盘点十大好色皇帝

  7、BSD猜想
  BSD猜想,全称贝赫和斯维纳通-戴尔猜想(BirchandSwinnerton-Dyer猜想),它描述了阿贝尔簇的算术性质与解析性质之间的联系。

  猜想陈述:
  给定一个整体域上的阿贝尔簇,猜想它的莫代尔群的秩等于它的L函数在1处的零点阶数,且它的L函数在1处的泰勒展开的首项系数与莫代尔群的有限部分大小、自由部分体积、所有素位的周期以及沙群有精确的等式关系。

  前半部分通常称为弱BSD猜想。BSD猜想是分圆域的类数公式的推广。格罗斯提出了一个细化的BSD猜想。布洛克和加藤提出了更一般的对于motif的Bloch-Kato猜想。

  已知结果:
  BSD猜想的陈述依赖于莫代尔定理:整体域上的阿贝尔簇的有理点形成一个有限生成交换群。精确的部分依赖于沙群的有限性猜想。

  对于解析秩为0的情形,Coates,Wiles,Kolyvagin,Rubin,Skinner,Urban等人证明了弱BSD猜想,并且精确的BSD猜想在2以外均成立。

  对于解析秩为1的情形,Gross,Zagier等人证明了弱BSD猜想,并且精确的BSD猜想在2和导子以外均成立。

  猜想的推论:
  由BSD猜想可以推出奇偶性猜想、西尔维斯特等很多猜想。其中最著名的是与同余数问题的关系,从BSD猜想可以推出模8余5,6,7的平方自由的正整数一定可以成为某个有理边长直角三角形的面积。

  数学家总是被诸如那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方程是否有一个整数解。

  当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解)。相反,如果z(1)不等于0。那么只存在着有限多个这样的点。

你可能也喜欢:
民国十大奇女子,个个都是奇才
让人厌恶至极的中国十大汉奸
历史上伟大杰出的中国十大皇帝
钉上历史的耻辱柱,遗臭万年的古代中国十大奸臣

  近代三大数学难题:
  1、费马大定理
  费马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。

  1637年,法国业余大数学家费尔马(PierredeFremat)在“算术”的关于勾股数问题的页边上,写下猜想:x^n+y^n=z^n是不可能的(这里n大于2;a,b,c,n都是非零整数)。此猜想后来就称为费马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。

  一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。

  历史上费马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。

  历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在“谷山丰—志村五朗猜想”之中。童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。终于在1993年6月23日剑桥大学牛顿研究所的“世纪演讲”最后,宣布证明了费尔马大定理。立刻震动世界,普天同庆。

  不幸的是,数月后逐渐发现此证明有漏洞,一时更成世界焦点。这个证明体系是千万个深奥数学推理连接成千个最现代的定理、事实和计算所组成的千百回转的逻辑网络,任何一环节的问题都会导致前功尽弃。怀尔斯绝境搏斗,毫无出路。

  1994年9月19日,星期一的早晨,怀尔斯在思维的闪电中突然找到了迷失的钥匙:解答原来就在废墟中!他热泪夺眶而出。怀尔斯的历史性长文“模椭圆曲线和费尔马大定理”1995年5月发表在美国《数学年刊》第142卷,实际占满了全卷,共五章,130页。1997年6月27日,怀尔斯获得沃尔夫斯克勒10万马克悬赏大奖。离截止期10年,圆了历史的梦。他还获得沃尔夫奖(1996、3),美国国家科学家院奖(1996、6),费尔兹特别奖(1998、8)。

你可能也喜欢:
惊呆了!中国史上最神奇的十大预言
世界十大最昂贵的摄影作品
世界十大最难学的乐器,你能学会吗?
你是这些姓氏吗?中国最古老的家族排名

  2、四色定理
  四色定理的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示,即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。

  四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。

  1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家汉密尔顿爵士请教。汉密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年汉密尔顿逝世为止,问题也没有能够解决。

  1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。

  肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”。如为正规地图,否则为非正规地图。一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。

  肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。

  不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。第一个概念是“构形”。他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。

  肯普提出的另一个概念是“可约”性。“可约”这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。

  11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久,泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。

  后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。

  进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,美国著名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。

  高速数字计算机的发明,促使更多数学家对“四色问题”的研究。从1936年就开始研究四色猜想的海克,公开宣称四色猜想可用寻找可约图形的不可避免组来证明。他的学生丢雷写了一个计算程序,海克不仅能用这程序产生的数据来证明构形可约,而且描绘可约构形的方法是从改造地图成为数学上称为“对偶”形着手。

  他把每个国家的首都标出来,然后把相邻国家的首都用一条越过边界的铁路连接起来,除首都(称为顶点)及铁路(称为弧或边)外,擦掉其他所有的线,剩下的称为原图的对偶图。到了六十年代后期,海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组。

  在海克的研究中第一次以颇不成熟的形式出现的“放电法”,这对以后关于不可避免组的研究是个关键,也是证明四色定理的中心要素。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。

  美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序。就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。

  这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。“四色问题”的被证明仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点。

  在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。

  不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍由不少数学家和数学爱好者在寻找更简洁的证明方法。

你可能也喜欢:
中国最古老的建筑排名,十大建筑有哪些?
毛骨悚然!世界十大最恶心虫子
上古十大神剑除了轩辕夏禹剑还有
聪明绝世,历史上最聪明的十个人

  3、哥德巴赫猜想
  史上和质数有关的数学猜想中,最著名的当然就是“哥德巴赫猜想”了。

  1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想:(1)任何不小于6的偶数,都是两个奇质数之和;(2)任何不小于9的奇数,都是三个奇质数之和。

  这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。

  同年6月30日,欧拉在给哥德巴赫的回信中,明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。

  从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。

  我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。

  1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。

  20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。

  1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之积。”从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。

  1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。

  1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的积。”这个定理被世界数学界称为“陈氏定理”。

  由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。

你可能也喜欢:
充满传奇色彩,历史上10个最著名的贼
中国古代十大名刀,你想不想拥有一把
体现美的价值之最适合女生的乐器
十大恐怖动物盘点!让你瑟瑟发抖

展开全文
一命二运三风水四积阴德五读书,测你八字命定的财运、感情、事业:
八字精批

相关推荐

静电鱼 水瓶座星运详解【周运2025年1月20日-1月26日】静电鱼 摩羯座星运详解【周运2025年1月20日-1月26日】2025年2月结婚黄道吉日有哪些日子2025年1月26日适合结婚吗 今天是良辰吉日吗苏珊米勒 今日星座运势查询2025.1.152025年1月结婚黄道吉日有哪些日子

编辑推荐

网友热门关注话题

八字批解从八字看你的人生轨迹2024年运势详批旺夫相今日财神方位近期你有桃花运到来吗本命年八字格局你的属相今年运势如何是什么阻碍了你的事业发展